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Derived English words from three corpora

Modeling durations with:

▪ morphological segmentability (relative frequency)

▪ other frequency measures (word frequency, base frequency)

▪ informativity (semantic information load, affix probability)

▪ prosodic structure (pword integration)

▪ a number of “traditional” covariates

 In a nutshell: These variables produce very inconsistent results.

 Both effects and null results are often not well explained at the 

(traditional) theoretical level.

AudioBNC Quakebox ONZE
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We need to explore whether LDL is a fruitful alternative for predicting our data.

▪ How well can it account for the durational variation of derivatives?

▪ What do effects of LDL-derived measures tell us about speech production?

▪ What does LDL tell us about the role of morphological categories?
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AudioBNC

tokens types derivational functions

audio data 4530 363 DIS, NESS, LESS, ATION, IZE
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AudioBNC

tokens types derivational functions

audio data 4530 363 DIS, NESS, LESS, ATION, IZE

training data 363

+ 4813

DIS, NESS, LESS, ATION, IZE,

AGAIN, AGENT, EE, ENCE, FUL, IC, 

INSTRUMENT, ISH, IST, IVE, LY, MENT, 

MIS, NOT, ORDINAL, OUS, OUT, SUB, 

UNDO, Y, MONOMORPHEMIC

AudioBNC

TASA

Baayen et 

al. 2019
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Schematic examples

Method

#k{ k{t {t# #h{ h{p CAT HAPPINESS NESS WALK

k{t 1 1 1 0 0 k{t 0.000000 -6.24E-05 -0.0003179 4.71E-05

h{pInIs 0 0 0 1 1 h{pInIs -0.00056 0.0346008 0.032476 7.26E-05

w$k 0 0 0 0 0 w$k 0.000304 -0.0002334 -9.76E-06 0.00000

lEm@n 0 0 0 0 0 lEm@n -7.28E-05 -2.41E-07 -0.0001247 -2.68E-05

S matrixC matrix
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Schematic examples

Method

CAT HAPPINESS NESS WALK

CAT 0.000000 -6.24E-05 -0.0003179 4.71E-05

HAPPINESS -0.000110 0.00000000 0.032476 0.000194

NESS -0.000450 0.0346008 0.000000 -0.0001

WALK 0.000304 -0.0002335 -9.76E-06 0.000000

LEMON -7.28E-05 -2.41E-07 -0.0001247 -2.68E-05

lexome-to-lexome matrix

NDL network in TASA

Baayen et al. 2019

#k{ k{t {t# #h{ h{p CAT HAPPINESS NESS WALK

k{t 1 1 1 0 0 k{t 0.000000 -6.24E-05 -0.0003179 4.71E-05

h{pInIs 0 0 0 1 1 h{pInIs -0.00056 0.0346008 0.032476 7.26E-05

w$k 0 0 0 0 0 w$k 0.000304 -0.0002335 -9.76E-06 0.00000

lEm@n 0 0 0 0 0 lEm@n -7.28E-05 -2.41E-07 -0.0001247 -2.68E-05

S matrixC matrix
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Two networks

Method

M-Network I-Network

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 + 𝑁𝐸𝑆𝑆

Vectors contain idiosyncratic 

information and information about 

morphological category.

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠

Vectors contain only idiosyncratic 

information.
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Method

C
forms

S
meanings

F

comprehension

G

production
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10

predicting meanings

መ𝑆 = 𝐶𝐹

predicting forms

መ𝐶 = 𝑆𝐺

Method
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Method

predictor defined as represents
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Method

predictor defined as represents

MEAN WORD SUPPORT 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒𝑠
articulatory certainty
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SEMANTIC VECTOR LENGTH L1 distance of Ƹ𝑠 activation diversity, polysemy
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Method

predictor defined as represents
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SEMANTIC DENSITY mean correlation of Ƹ𝑠
with top 8 neighbors

semantic transparency
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Method

predictor defined as represents

MEAN WORD SUPPORT 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒𝑠
articulatory certainty

SEMANTIC VECTOR LENGTH L1 distance of Ƹ𝑠 activation diversity, polysemy

SEMANTIC DENSITY mean correlation of Ƹ𝑠
with top 8 neighbors

semantic transparency

PATH ENTROPIES Shannon entropy of 

path supports

articulatory uncertainty
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Method

predictor defined as represents

MEAN WORD SUPPORT 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒𝑠
articulatory certainty

SEMANTIC VECTOR LENGTH L1 distance of Ƹ𝑠 activation diversity, polysemy

SEMANTIC DENSITY mean correlation of Ƹ𝑠
with top 8 neighbors

semantic transparency

PATH ENTROPIES Shannon entropy of 

path supports

articulatory uncertainty

TARGET CORRELATION correlation between

Ƹ𝑠 and 𝑠
accuracy in predicting meaning 

from form

SPEECH RATE 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
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DURATION DIFFERENCE

residuals of a linear model absolute duration ~ baseline duration

absolute duration = actual acoustic duration

baseline duration = sum of mean segment durations in corpus

Method
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Results

Comprehension 82 %

Production 99 %

Comprehension 81 %

Production 99 %

Adjusted R2 38 %

traditional model with RELATIVE

FREQUENCY, BIGRAM FREQUENCY, 

BIPHONE PROBABILITY, AFFIX, 

SPEECH RATE: 37 %

Network accuracy

M-Network I-Network

M-Network I-Network

Explained variance of variables predicting duration

Adjusted R2 37 %
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Results

M-Network I-Network

*** ***
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Results

M-Network I-Network

*** ***



SEMANTIC DENSITY
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Results

M-Network I-Network

** ***



SEMANTIC VECTOR LENGTH
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Results

M-Network I-Network



TARGET CORRELATION
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Results

M-Network I-Network



General implications
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LDL-derived variables are successful in predicting derivative durations.

 This is further evidence that discriminative models are a promising approach to 

speech production where morpho-phonetic effects are not unexpected.

cf., e.g., Baayen et al. 2019, Chuang et al. 2020, Tomaschek et al. 2019, 

Tucker et al. 2019

LDL can discriminate derivational functions from sublexical and contextual cues.

 This provides more support for the idea that morphology is possible without 

morphemes.

Discussion
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Higher certainty is associated with lengthening.

 In the discussion of whether certainty has an effect of enhancement or 

reduction, much recent evidence points towards enhancement.

cf. Tomaschek et al. 2019, Kuperman et al. 2007, Cohen 2014, Cohen 2015, 

Tucker et al. 2019, this study

Higher semantic transparency can be associated with lengthening and with 

shortening.

 Traditional lines of argumentation would expect lengthening.

cf. Hay 2003, 2007, Plag and Ben Hedia 2018, Zuraw et al. 2020

 If  interpreted with regards to activation diversity, we could also expect

shortening.

cf. Tucker et al. 2019

Discussion



Differences between morphological functions
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Differences between morphological categories can emerge even from the network 

without any information about derivational functions.

Some of these differences mirror traditional classifications from the literature.

 Semantic density is higher for words with NESS, LESS and DIS than for words 

with ATION.

 -ness, -less and dis- are regarded as producing more transparent 

derivatives than -ation (exception: IZE vs. -ize).

cf. Bauer et al. 2013; Plag 2018

 Semantic vector length was highest for IZE and ATION words.

 -ize and -ation are traditionally described as having highly multifaceted 

semantics, while -less, dis-, and to a lesser extent -ness have clearer and 

narrower semantics.

cf. Bauer et al. 2013; Plag 2018

Discussion



Future directions
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We think it could be worthwhile to…

▪ analyze durations for a larger dataset with more derivational functions.

▪ somehow control the response variable for segmental makeup without referring 

to segments.

▪ explore how to build vectors for words with multiple derivational functions.

We also need to think about how to interpret semantic transparency effects:

▪ Why does articulation slow down both with high and with low semantic density, 

and is fastest for medium densities?

▪ Which behavior would be expected based on which theoretical perspective, 

and why?

Discussion



Future directions
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Thank you for listening.

Discussion
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Appendix

M-Network

I-Network

Estimate Std. Err. t-value Pr(>|t|) 

Intercept 0.090708 0.025887 3.504 0.000463 ***

MEAN WORD SUPPORT 0.250262 0.020700 12.090 < 2e-16 ***

SEMANTIC DENSITY 0.033868   0.012372 2.737 0.006217 **

PATH ENTROPIES -0.008442   0.002309 -3.656 0.000259 ***

SPEECH RATE -0.058602 0.001159 -50.579 < 2e-16 ***

Estimate Std. Err. t-value Pr(>|t|)

Intercept 0.216901 0.026210 8.276 < 2e-16 ***

MEAN WORD SUPPORT 0.170726 0.023507 7.263 4.45e-13 ***

SEMANTIC DENSITY -0.043545 0.008925 -4.879 1.10e-06 ***

PATH ENTROPIES -0.008688 0.002242 -3.875 0.000108 ***

SPEECH RATE -0.058757 0.001148 -51.186 < 2e-16 ***
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Appendix

Traditional model

Estimate Std. Err. t-value Pr(>|t|)

Intercept 3.299e-01 1.086e-02 30.379 < 2e-16 ***

RELATIVE FREQUENCY -2.383e-05 4.167e-05 -0.572 0.567504

BIGRAM FREQUENCY -4.169e-07 6.135e-07 -0.680 0.496818

MEAN BIPHONE PROBABILITY -4.835e+00 8.661e-01 -5.583 2.51e-08 ***

AFFIX less

ness 2.921e-03 9.242e-03 0.316 0.751941

ation 5.843e-02 8.201e-03 7.125 1.21e-12 ***

dis 6.504e-02 1.016e-02 6.399 1.73e-10 ***

ize 3.451e-02 9.222e-03 3.742 0.000185 ***

SPEECH RATE -5.885e-02 1.161e-03 -50.680 < 2e-16 ***
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Appendix

Traditional model

Df Sum Sq Mean Sq F-value Pr(>F)

RELATIVE FREQUENCY 1 0.018 0.0182 2.1070 0.14669

MEAN BIPHONE PROBABILITY 1 0.043 0.0433 5.0118 0.02522 *

AFFIX 4 0.581 0.1452 16.8251 1.069e-13 ***

SPEECH RATE 1 22.223 22.2229 2574.5115 < 2.2e-16 ***

BIGRAM FREQUENCY 1 0.004 0.0040 0.4618 0.49682
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Appendix

M-Network I-Network

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 + 𝑁𝐸𝑆𝑆

Vectors contain 

idiosyncratic information 

and information about 

morphological category.

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠

Vectors contain 

only idiosyncratic 

information.

B-Network

ℎ𝑎𝑝𝑝𝑦 + 𝑁𝐸𝑆𝑆

Vectors contain information 

about morphological 

category and the base, but 

no idiosyncratic information.

r = 0.08 r = 0.1

r = 0.9
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Appendix

M-Network I-Network

*** ***
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#l$
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l@s

@s#
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Toy example




